S Phase Entry of Neural Progenitor Cells Correlates with Increased Blood Flow in the Young Subventricular Zone
نویسندگان
چکیده
The postnatal subventricular zone (SVZ) contains proliferating neural progenitor cells in close proximity to blood vessels. Insults and drug treatments acutely stimulate cell proliferation in the SVZ, which was assessed by labeling cells entering S phase. Although G1-to-S progression is metabolically demanding on a minute-to-hour time scale, it remains unknown whether increased SVZ cell proliferation is accompanied by a local hemodynamic response. This neurovascular coupling provides energy substrates to active neuronal assemblies. Transcardial dye perfusion revealed the presence of capillaries throughout the SVZ that constrict upon applications of the thromboxane A(2) receptor agonist U-46119 in acute brain slice preparations. We then monitored in vivo blood flow using laser Doppler flowmetry via a microprobe located either in the SVZ or a mature network. U-46119 injections into the lateral ventricle decreased blood flow in the SVZ and the striatum, which are near the ventricle. A 1-hour ventricular injection of epidermal and basic fibroblast growth factor (EGF and bFGF) significantly increased the percentage of Sox2 transcription factor-positive cells in S phase 1.5 hours post-injection. This increase was accompanied by a sustained rise in blood flow in the SVZ but not in the striatum. Direct growth factor injections into the cortex did not alter local blood flow, ruling out direct effects on capillaries. These findings suggest that an acute increase in the number of G1-to-S cycling SVZ cells is accompanied by neurometabolic-vascular coupling, which may provide energy and nutrient for cell cycle progression.
منابع مشابه
Neural progenitor cells regulate capillary blood flow in the postnatal subventricular zone.
In the postnatal subventricular zone (SVZ), S phase entry of neural progenitor cells (NPCs) correlates with a local increase in blood flow. However, the cellular mechanism controlling this hemodynamic response remains unknown. We show that a subpopulation of SVZ cells, astrocyte-like cells or B-cells, sends projections ensheathing pericytes on SVZ capillaries in young mice. We examined whether ...
متن کاملIsolation and Differentiation of Neural Stem/Progenitor Cells From Subventricular Zone of One Adult Rat
Introduction: In adult mammalian brain, neural stem cells are isolated from both the dentate gyrus and subventricular zone. This study aimed to isolate neural stem cells from adult rat subventricular zone and differentiate them into neurons and astrocytes. Methods: In this study, the whole brain was removed after full anesthesia and creating cervical dislocation. Under a microscope, subv...
متن کاملReduction of the cell cycle length by decreasing G1 phase and cell cycle reentry expand neuronal progenitor cells in the subventricular zone of adult rat after stroke.
A critical determinant of proliferation of progenitor cells is the duration of the cell division cycle. Stroke increases proliferation of progenitor cells in the subventricular zone (SVZ). Using cumulative and single S-phase labeling with 5-bromo-2'-deoxyuridine, we examined cell cycle kinetics of neural progenitor cells in the SVZ after stroke. In nonstroke rats, 20% of the SVZ cell population...
متن کاملCoupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke.
Angiogenesis and neurogenesis are coupled processes. Using a coculture system, we tested the hypothesis that cerebral endothelial cells activated by ischemia enhance neural progenitor cell proliferation and differentiation, while neural progenitor cells isolated from the ischemic subventricular zone promote angiogenesis. Coculture of neural progenitor cells isolated from the subventricular zone...
متن کاملNeurogenin 1 mediates erythropoietin enhanced differentiation of adult neural progenitor cells.
Proneuronal basic helix-loop-helix (bHLH) transcription factor, neurogenin 1 (Ngn1), regulates neuronal differentiation during development of the cerebral cortex. Akt mediates proneuronal bHLH protein function to promote neuronal differentiation. Here, we show that recombinant human erythropoietin (rhEPO) significantly increased Akt activity and Ngn1 mRNA levels in neural progenitor cells deriv...
متن کامل